National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Critical Heat Flux on Smooth and Modified Surfaces
Suk, Ladislav ; Kolat, Pavel (referee) ; Katovský, Karel (referee) ; Fiedler, Jan (advisor)
This thesis deals with the problem of critical heat flux (CHF) on technically smooth and treated surfaces at low pressures. The theoretical part presents the basic concepts of two-phase flow and an analysis of existing work on the influence of the surface on CHF. The main part of the work describes the built experimental apparatus for CHF research at low pressures of 100 -1500 kPa (1-15 bar) with a vertical internally heated annular test section. The internal annuli consists of an outer glass tube with an inner diameter of 14.8 mm and an inner tube made of Inconel ™ 625 / Optimized ZIRLO ™ with an outer diameter of 9.14 mm and a heated length of 380/365 mm. CHF experiments on technically smooth surface were performed at outlet pressures 120 kPa, 200 kPa and 300 kPa, at an inlet temperature of 64, 78 and 91 °C and at mass flux of 400, 500, 600 and 800 kg / m2s. The Inconel tubes were tested in two different surface modifications - abraded and bead blasted. Experiments were performed at mass flows of 400, 500 and 600 kg / m2s. The total number of 122 experimental runs were conducted and the results were compared with other literature experimental data. The maximum increase of CHF on abraded / bead blasted tube was 18.12% / 16.17%. The surface structure was analysed by laser microscopy. The wetting behaviour of the surface structures was measured by the sessile drop method. The elemental analysis of the surface was evaluated using the EDS method.
Critical Heat Flux on Smooth and Modified Surfaces
Suk, Ladislav ; Kolat, Pavel (referee) ; Katovský, Karel (referee) ; Fiedler, Jan (advisor)
This thesis deals with the problem of critical heat flux (CHF) on technically smooth and treated surfaces at low pressures. The theoretical part presents the basic concepts of two-phase flow and an analysis of existing work on the influence of the surface on CHF. The main part of the work describes the built experimental apparatus for CHF research at low pressures of 100 -1500 kPa (1-15 bar) with a vertical internally heated annular test section. The internal annuli consists of an outer glass tube with an inner diameter of 14.8 mm and an inner tube made of Inconel ™ 625 / Optimized ZIRLO ™ with an outer diameter of 9.14 mm and a heated length of 380/365 mm. CHF experiments on technically smooth surface were performed at outlet pressures 120 kPa, 200 kPa and 300 kPa, at an inlet temperature of 64, 78 and 91 °C and at mass flux of 400, 500, 600 and 800 kg / m2s. The Inconel tubes were tested in two different surface modifications - abraded and bead blasted. Experiments were performed at mass flows of 400, 500 and 600 kg / m2s. The total number of 122 experimental runs were conducted and the results were compared with other literature experimental data. The maximum increase of CHF on abraded / bead blasted tube was 18.12% / 16.17%. The surface structure was analysed by laser microscopy. The wetting behaviour of the surface structures was measured by the sessile drop method. The elemental analysis of the surface was evaluated using the EDS method.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.